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Phase transition and landscape statistics of the number partitioning problem
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The phase transition in the number partitioning problem~NPP!, i.e., the transition from a region in the space
of control parameters in which almost all instances have many solutions to a region in which almost all
instances have no solution, is investigated by examining the energy landscape of this classic optimization
problem. This is achieved by coding the information about the minimum energy paths connecting pairs of
minima into a tree structure, termed a barrier tree, the leaves and internal nodes of which represent, respec-
tively, the minima and the lowest energy saddles connecting those minima. Here we apply several measures of
shape~balance and symmetry! as well as of branch lengths~barrier heights! to the barrier trees that result from
the landscape of the NPP, aiming at identifying traces of the easy-hard transition. We find that it is not possible
to tell the easy regime from the hard one by visual inspection of the trees or by measuring the barrier heights.
Only thedifficulty measure, given by the maximum value of the ratio between the barrier height and the energy
surplus of local minima, succeeded in detecting traces of the phase transition in the tree. In addition, we show
that the barrier trees associated with the NPP are very similar to random trees, contrasting dramatically with
trees associated with thep spin-glass and random energy models. We also examine critically a recent conjec-
ture on the equivalence between the NPP and a truncated random energy model.
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I. INTRODUCTION

The relevance of the concepts and techniques of statis
physics to understanding the typical behavior of classe
optimization or decision problems was pointed out by ma
authors already in the middle of the 1980s~see, e.g., Refs
@1,2#!. However, it was only about ten years later, owi
mainly to the finding of a ubiquitous peak in computation
cost signaling a transition between easy and difficult
stances of optimization problems, that the physics appro
succeeded in attracting the attention of the computer scie
community~see, e.g., Refs.@3–7#!. In particular, instances in
the phase transition region are now routinely used to ben
mark algorithms and search heuristics, and so a precise l
tion of the critical point in addition to an estimate of th
width of the transition region has gained considerable pr
tical importance.

The specific optimization problem we consider here is
number partitioning problem~NPP!, which is one of the ba-
sic NP-complete problems that form the core of the theory
NP completeness@8#. NPP has an easy formulation: GivenN
not necessarily distinct positive numbersa1 , . . . , aN , find a
subsetX,$1, . . . ,N% such that

E~X!5U(
j PX

aj2 (
j ¹X

ajU ~1!

is minimized. We remark that NPP can be regarded a
Mattis-like Ising spin model with Hamiltonian

H~X!5E2~X!5(
i , j

aiajs is j , ~2!
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wheres i511 if i PX ands i521 if i ¹X @9#. It is there-
fore natural to considerE as an energy~cost! landscape over
the hypercube; in other words, single spin flips are a natu
way of defining a neighborhood relation for the NPP. F
concreteness, we will assume from here on that theai ’s are
independent, identically distributed random variables t
take on integer values between 1 andl with equal probabil-
ity.

A partition P is perfectif E(P)50 or 1 for ( iai even or
odd, respectively. The existence of perfect partitions depe
on the accuracy to which the numbersai are determined as
well as on the size of the problemN. The crucial control
parameter here is the ratio between the number of bits
which aj is specified and the problem size,

k5
log2l

N
. ~3!

The relevance ofk can be appreciated by considering t
annealed estimate of the expected number of perfect p
tions, S52N/ l , so thatk512(log2S)/N @10#. Hence the
annealed theory indicates that fork,1 there is an asymp
totically exponential number of perfect partitions, while f
k.1 the probability of finding a perfect partition is expo
nentially small. Extensive numerical simulations and stati
cal mechanics calculations corroborate the valuekc51 as
the threshold separating the easy-to-solve from the hard
solve regimes@10,11#.

Probabilistic and statistical mechanics analyses of
ground states of the Hamiltonian~2! in the limit of infinite
precisionl→`, in which theai ’s can be viewed as continu
ous variables, have of course failed to detect the phase t
sition ~see, e.g., Refs.@9,12,13#!. The thermodynamics for
©2003 The American Physical Society01-1
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general l was ‘‘solved’’ under the assumption of sel
averaging of the random variablesai , but that solution is not
completely satisfactory since it predicts a negative entr
for k.kc @11#. Thus, a reliable theory for the ground stat
of the NPP, probably based on the replica method, has y
be obtained.

Generally, the aforementioned phase transition is defi
as a transition from a region in the space of control para
eters in which almost all instances have many solutions
region in which almost all instances have no solution@3,4#.
Hence, the investigations have relied mainly on exhaus
search procedures, such as branch-and-bound algorit
that guarantee the finding of the global optima, or on sta
tical mechanics calculations of the expected properties, s
as the entropy, of the ground states. In this contribution
seek evidence of this easy-hard transition in the structur
the cost landscape of the optimization problem, focusing
the distribution of optima and on the distribution of co
barriers between these optima. To this end, we code the
formation about the paths of minimal cost leading to diffe
ent optima in a tree structure, termed thebarrier tree of the
cost landscape. The leaves of this tree represent the
optima and the internal nodes the lowest cost saddles
necting those optima. Barrier trees have been widely use
study protein@14–16#, RNA @17,18#, and spin-glass@19–22#
landscapes.

We find that the structure of the landscape, as meas
by the local minima and their connecting saddle poin
shows surprisingly little difference in the easy and hard
gimes. The sharp transition between these two regime
revealed only by thedifficulty of the landscape, a paramet
measuring the maximum ratio of energy barrier to ene
gain for the escape from a metastable state, which is dire
related to the optimal speed of convergence of simula
annealing@23–27#. We stress that our goal here is not
locate the transition point, which can be achieved by sim
looking at the value of the global energy minimum in
ensemble of randomly generated instances~in this sense, a
barrier tree always contains the information on whether
given instance is easy or hard!, but to seek evidences of th
easy and hard regimes in other global statistical propertie
the energy landscape. Furthermore, we examine a rem
able conjecture about the equivalence between the infi
accuracy version of the NPP and the random cost prob
@28#, and show that, despite the equivalence at the leve
the energy distributions, their barrier trees are comple
different.

II. BARRIER TREES

The energy of the lowest saddle point separating two lo
minima x andy is

E@x,y#5 min
pPPxy

max
zPp

E~z!, ~4!

wherePxy is the set of all pathsp connectingx and y by a
series of successive spin flips@19,29#. The barrier height
B(x) of a metastable statex is the minimum height of a
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saddle point that connects it with a metastable statey with
strictly smaller energyE(y),E(x). In symbols,

B~x!5min$E@x,y#2E~x!u y:E~y!,E~x!%. ~5!

Since a direct evaluation of Eq.~4! would require the explicit
construction of all possible paths it does not provide a f
sible algorithm for determiningE@x,y# even if N is small
enough to allow an exhaustive survey of the landscape.
values ofE@x,y# andB(x) can, however, be retrieved from
the barrier tree of the landscape. The algorithm for con
structing these barrier trees is presented in@17,18# ~see also
Ref. @20# for a detailed account of the algorithm in the spi
glass context!. It is implemented in theBARRIERS program,1

which constructs the tree from a sorted list of energy val
of all spin configurations in the landscape. In a barrier tr
the leaves of the tree represent the local minima, and
internal nodes represent the saddles, with the barrier s
given by the length of the branches connecting the lo
minima to their corresponding saddles. Figure 1 illustra
typical barrier trees for the problems considered in this
per.

III. DEPTH AND DIFFICULTY

The depthD and difficultyc of a landscape are measur
of the landscape structure that are directly related to the
formance of simulated annealing@23–27#. The depth of a
landscape is defined as the maximum barrier height,D
5maxB(x), where the maximum is taken over nonglob
minima only. In particular, it can be shown that simulat
annealing converges almost surely to a ground state if
only if the cooling scheduleTk satisfies(k>0exp(2D/Tk)
5` @23#. The difficulty of the landscape is a dimensionle
quantity defined as

1The source code is available at http://www.tbi.univie.ac.
; ivo/RNA/Barriers/

FIG. 1. Typical barrier trees for~a! the number partitioning
problem with infinite precision numbers and~b! the truncated ran-
dom energy model~random cost problem! for N510.
1-2
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c5maxH B~x!

E~x!2E~min!J , ~6!

whereE(min) is the global energy minimum and, as befo
the maximum is taken over local minima only. The difficul
c is directly related to the optimal speed of convergence
simulated annealing. It is more convenient to work with t
scaled quantity

l5 log2~c/2N!5 log2c2N ~7!

instead.
We turn now to the evaluation of the effects on the de

and difficulty measures of a change in the accuracy of
ai ’s for a fixed problem size. We find that, as in many oth
tree measures discussed in the next section, the depth
sureD is independent of the accuracy of theai ’s. The effects
on the difficulty measure, on the other hand, are striki
Explicitly, in Fig. 2, where each symbol represents the res
of an average over 100 landscapes, we show that there
scaling relation between the average difficulty and the ac
racy of number representation:^l& converges to a unique
function of (k21)N for large N. This scaling function in-
creases linearly fork,1 and approaches a constant value
about 22.0 for k.1. Hence^l& viewed as a function of
k21 exhibits a singularity atk51 since it increases linearl
with a slope proportional toN as long ask,1 and tends
toward a constant value fork.1. Therefore the rescale
difficulty reflects the phase transition reported in previo
analyses of the NPP, which have focused on the sing
behavior of the probability of a perfect partition@10,11#.

A simple annealing-like argument to explain the behav
of the difficulty depicted in Fig. 2 goes as follows. In th
easy regime we have more partitions~spin configurations!
than different combinations of numbers, and thus the glo
optimum will probably be a perfect partition, i.e.,Emin50 or
1, while the lowest metastable state will haveE52 or 3.
The height of the barrier separating them, however, is es
tially the energy of a random configuration, i.e.,B(x)
5O( l ), and the maximum barrier height will be among t
largest numbers in the system, i.e., log2c'log2l. Hence, sub-

FIG. 2. ~a! Data collapse of the rescaled average logarithm
difficulty ^l& as function of the rescaled accuracy (k21)N for
problem sizesN512,14,16,18, and 20.~b! Detailed data for (k
21)N55 (d), 0 (j), and25 (L) confirm the existence of the
scaling function for largeN.
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tracting N from both sides yieldsl'(k21)N in the easy
regime. In the hard regime we can hope to cancel only
leadingN bits in the optimal configuration; thus we expect
ground state energyEmin' l /2N, while the maximum barrier
height is againO( l ), yielding log2c'N, which is then inde-
pendent ofk. Of course, these crude estimates miss poly
mial corrections such as the factorN1/2 that appears in the
rigorous computation of the ground state energy@12#. Note,
however, that we are considering log2Emin , i.e., we ignore
only logarithmic corrections which we would expect to ari
for more careful estimates of log2B(x) as well. As the values
of lnc vary significantly among different landscapes with t
same values ofl and N, it is not possible to obtain suffi-
ciently accurate estimates of^l& that would reveal such cor
rections unambiguously.

IV. MEASURES OF BARRIER TREE SHAPES

Since a barrier tree embodies all the relevant quantita
information about the multivalley structure of an ener
landscape, it seems natural to ask if there is any trace of
easy-hard phase transition in the shape of the barrier tree
the NPP landscapes.

Before introducing the standard measures of tree sha
we will consider the effect of the accuracyl on probably the
main characteristic of a tree, namely, its number of leave
miniman. In fact, it is tempting to associate the difficulty o
a problem with the number of local minima~traps! in its
energy landscape representation. Surprisingly, however,
find that the average fraction of local minima does n
change withl as soon asl .N, i.e., as soon as it become
unlikely that adjacent configurations have the same ene
~see Fig. 3!. For very small values ofl the number of local
optima depends strongly on how degenerate neighbors
treated~data not shown!. The important point here is that th
fraction of minima stays constant across the easy-hard t
sition and, in particular, it is given by the formula

c

FIG. 3. Average fraction of local minimân&/2N as a function of
the rescaled accuracy (k21)N for ~top to bottom! N
512, 14, 16, 18, and 20. Each symbol is the result of an aver
over 200 landscapes and the horizontal lines are the theore
predictions for the limitl→`.
1-3
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^n&/2N5A24/p N23/2, ~8!

which was obtained in the limit of infinite accuracy@13#.
Now we consider five measures of tree shape that w

originally used to study phylogenetic trees~see, e.g., Refs
@30,31#! for the barrier trees resulting from NPP landscap
These measures provide statistical information about
shape of the barrier tree, mainly its symmetry or balance,
ignore the branch lengths, i.e., the height of the barriers
tween minima, which were the object of the depth and di
cult measures. Recently, we showed that these measure
capable of distinguishing betweenp-spin models with differ-
ent values ofp @22#.

Let d( i , j ) be the graph-theoretical distance between t
nodes of the tree, i.e., the number of edges along the
that connects them. Furthermore, we denote the root of
tree byB. The height of a leaf k is hk5d(B,k). Equiva-
lently, hk is the number of internal nodes between leafk and
the rootB ~inclusive!. For each interior nodei we have two
subtrees withr i and si leaves, respectively. We assumer i

>si . The subtree heightof an interior node i is mi

5maxkPTi
d( i ,k), where the maximum is taken over a

leavesk in the subtreeTi below i, i.e., the subtree of whichi
is the root.

With this notation we may define the following five cha
acteristic values for the shape of a binary rooted tree:~1!
H51/n(k51

n hk is theaverage heightof a leaf in the tree;~2!

sH5A(1/n)(k51
n (hk2H)2 is the standard deviation of th

leaf height;~3! C5@2/n(n23)12#( i 51
n21(r i2si) is a mea-

sure for the imbalance of trees with n.2; ~4! B1
5( iÞB1/mi is the average inverse subtree height, where
sum is taken over alln22 internal nodesi excluding the root
B; and ~5! B25(k51

n 22hkhk is an alternatively weighted
average leaf height.

The physical meaning ofH andsH is clear. We mention
only that for random trees~e.g., trees produced by the neutr
genealogical process@32#! the expected value ofH increases
as lnn. In addition,sH50 for a completely symmetric tree
The imbalance measureC assigns a weight proportional t
the number of leaves to each one of the two subtrees bra
ing out of an internal node. These weight differences are t
averaged and normalized over all internal nodes of the t
The value ofC increases from 0 for a completely symmetr
tree to 1 for a completely asymmetric tree. The statisticB1
looks at the longest possible pathmi from each internal node
i to any of the leaves in its subtree. The statisticB2 is based
on an index of information content. For highly asymmet
trees, such as those produced byp-spin landscapes@22#, it
will quickly converge to the valueB252. Both B1 and B2
have smaller values for increasingly asymmetric trees.

Somewhat surprisingly, none of these measures exhib
nontrivial dependence onk, as shown in Fig. 4 for the mea
suresC, B1, andB2. The other quantitiesH andsH behave
analogously but have a larger scatter for largeN. Therefore it
is impossible to tell the easy from the hard regime by vis
inspection of the barrier tree or by simply measuring bran
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lengths, as is done in the depth measure. The only effec
measure involves a nontrivial balance between bra
lengths and leaf energies.

V. TRUNCATED RANDOM ENERGY MODEL

A very interesting though poorly explored finding co
cerns the equivalence between the NPP in the limit of infin
precision, where theai become real random variables distri
uted uniformly in the unit interval, and the symmetrize
truncated random energy model~REM! or random cost prob-
lem @28#. In particular, for large problem sizes the energies
two or more distinct configurations of the NPP become s
tistically independent and theM52N21 distinct energies val-
ues for unconstrained partitions are distributed according

P~E!5
2

A2pm`N
expS 2

E2

2m`NDQ~E!, ~9!

wherem`5^a2&51/3 is the second moment of theaj in the
corresponding number partitioning problem. Hence the b
claim that the NPP is essentially equivalent to a trunca
REM @28#. The main application of Eq.~9! is the derivation
of the probability density of the minimum energyEmin using
trite arguments of extreme statistics@28#,

r~Emin!5M P~0!exp@2M P~0!Emin#, ~10!

from which the expected minimum energy follows trivially

^Emin&5A2p/3 N21/2 22N, ~11!

in agreement with the known numerical@13# and analytical
@11# results for the NPP.

However, in order for the equivalence at the level of t
energy distribution between the NPP and the truncated R
to have any use in guiding the design of search heuristics
the NPP, it is important that other features of the two pro
lems, such as their multivalley structures, are similar too.
fact, a glance at Fig. 1 is already sufficient to reveal the d
structural difference between the barrier trees of these p
lems, and the remainder of this section is aimed at quant
ing these differences.

The expected number of minima can be easily calcula
for any random energy model with finite probability dens

FIG. 4. None of the measures of the tree shape shown
reflects the easy-hard transition of the NPP:~a! imblanceC, ~b!
inverse subtree heightB1, and~c! weighted leaf heightB2. The data
for N512(.),14(m),16(l),18(j), and 20(d) are averages
over 100 landscapes.
1-4
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over the reals@33,34#. The argument goes as follows. Fix a
arbitrary spin configurations5(s1 ,s2 , . . . ,sN) and con-
sider all itsN neighbors. Since we assign to each spin c
figuration a random energy value drawn from the continu
distribution ~9! we conclude that~i! all theseN11 energies
are distinct with probability 1; and~ii ! E(s) is the smallest
of theN11 numbers with a probability of 1/(N11). Hence
s is a local minimum with probability 1/(N11) and so the
fraction of local minima is

^n&/2N51/~N11!, ~12!

which, for largeN, is larger than the result for the NPP@see
Eq. ~8!# by a factor of the order ofN1/2.

In Fig. 5 we present the tree size (n) dependence of the
barrier tree measuresC andH for the NPP and the symme
trized truncated REM. A useful standard here, also show
this figure, is the random trees, generated as follows. F
createn nodes~the leaves! and put them in a setA. Next,
remove two random nodesx andy from A, create a new node
z, and makex andy its two children, and putz in the setA.
Repeat this procedure until there is only one node left inA,
which will be the root of the tree. Random trees are imp
tant from the biological viewpoint because they arise from
neutral genealogical process@32#. The symmetrized trun-
cated REM presents the same scaling onn as thep-spin
models, namely,H;n andC; lnln(n) within the range ofn
considered@22#. Of course, sinceCP@0,1#, this scaling can-
not be valid forn→`, but the double logarithmic depen
dence guarantees its validity for a very large range of t
sizes. Actually, as far as the five statistics introduced in S
IV are concerned, there are no significant differences
tween the symmetrized truncated REM and the stand
REM, both models producing then extremely unbalanc
trees. These measures, however, differ dramatically betw
the NPP and all previous spin-glass models analyzed@22#.
Surprisingly, the NPP barrier trees are practically indist
guishable from random trees and, in particular, the tree m
sures obey the same scaling relation with the tree sizeH
; ln(n) andC;1/n. Hence, these trees, in stark contrast w
the p-spin model and REM barrier trees, become more a
more balanced asn increases.

FIG. 5. Tree balance measuresC andH as functions of the tree
sizen for the symmetrized truncated REM (m), the NPP (d), and
random trees (L). The solid lines are numerical fittings:H
50.4n and C50.610.1lnln (n) for the REM, and H521
12ln (n) andC55/n for the NPP and random trees.
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Since the equivalence between NPP and the trunc
REM discussed above was proved only in the case of infi
precision numbers~i.e., k→`), it provides no clues abou
the easy-hard phase transition that takes place atk51. Nev-
ertheless, it is natural to ask if the integer counterpart of
truncated REM, obtained by considering the integer-valu
energiesE85 bEc, whereE is drawn from the distribution~9!
with m` replaced bym l5 l ( l 11)(2l 11)/6, exhibits a phase
transition. This can easily be answered by calculating
probability that a partition is perfect~i.e., Emin8 50 or 1),
which is given by

Pperf5E
0

2

dEmin r~Emin!512exp~22j!, ~13!

wherej52N/(2pm lN)1/2. Although one clearly recovers th
easy (Pperf'1) and the hard (Pperf'0)regimes depending
on whether the ratio (log2l)/N is very small or very large,
respectively, there is definitely no phase transition separa
them.

VI. CONCLUSION

Phase transitions in physical systems are characterize
the appearance of singularities in some observables, kn
as the order parameters of the system, such as, e.g., th
density in the boiling transition. In the case of mean-fie
spin-glass models the order parameter directly reflects
hierarchical organization of pure states in a complex mu
valley structure@2#. Therefore one expects that some featu
of that structure must undergo abrupt changes when the c
cal point is approached. Unfortunately, the vast majority
the phase transitions take place at finite temperature, wh
direct study of the landscape properties of spin-glass mo
based on natural quantities, such as saddle points
minima, is feasible at zero temperature only. In that sen
the easy-hard phase transitions in optimization problems@4#
in general, and in the number partitioning problem@10,11#
considered here, provide a unique chance to study how
onset of the phase transition affects the organization of
metastable states of a disordered spin system.

Somewhat surprisingly, we find that almost all features
the landscape, which we have properly mapped into a
structure through theBARRIERS program, are insensitive to
the onset of the easy-hard phase transition that takes p
when the number of bits needed to specify a numberai
equals the problem size, i.e.,k5(log2l)/N51. Interestingly,
only one of the measures studied, premonitorily termeddif-
ficulty in the mathematical literature of simulated anneali
@24#, exhibits a singular behavior at the critical point. As
result, the quality of the optima found by simulated anne
ing will probably depend strongly on whether the contr
parameters set the instance in the easy (k,1) or hard (k
.1) regime.

An important by-product of our study of the NPP lan
scape is the finding that the resulting barrier trees are v
similar to random trees, and so they become completely
anced~symmetric! in the limit of large system sizesN or,
equivalently, large tree sizesn. These trees contrast drast
1-5
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cally with the barrier trees resulting from thep spin-glass,
the random energy, or the symmetrized truncated rand
energy landscapes, which become completely unbalance
that limit. In this context, we note that, although there is
equivalence at the level of the energy distribution betwe
the NPP and the truncated random energy model, the st
tical properties of their energy landscapes are very differ
and probably so are the performances of local search he
tics in finding near-global solutions to these problems. Ac
ally, the similarity of the NPP barrier trees with random tre
may be part of the explanation for the failure of local sea
L

c

o,
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techniques to produce good solutions to this optimizat
problem.
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